skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Suthar, Rohit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a study on the characterization of density as a function of temperature for phase change materials (PCMs). More specifically, in this study we analyze organic alkane PCMs, often called paraffins. PCMs are materials that have the ability to absorb a substantial amount of heat during phase transition from solid to liquid, and therefore prove to be useful in thermal energy storage. The density of paraffin wax PCMs is largely dependent on temperature, and during the phase change process, the density decreases dramatically as the PCM transitions from solid to liquid. Consequently, the PCM experiences dramatic volumetric expansion during this transition. Besides the thermal energy storage uses of PCMs, this volumetric expansion that they exhibit is also used in thermal actuator applications, often referred to as wax motors. While density of PCMs does affect their thermal and mechanical performance, the property is not well-characterized within the literature. In this paper, we examine ten paraffin wax PCMs with varying meltingtemperatures and characterize their densities as a function of temperature. This characterization was done usinga piston and cylinder dilatometer test setup within a temperature-controlled thermal chamber that we designedand validated to the well-characterized density properties of water. The density and temperature relationships werefurther analyzed using piecewise linear regression analysis to develop mathematical models of density as it relates totemperature, which will be useful to those wishing to analyze designs in which PCMs are used, such as in PCM-filled heat sinks. 
    more » « less
  2. Abstract To fulfill the increasing demands of data storage and data processing within modern data centers, a corresponding increase in server performance is necessary. This leads to a subsequent increase in power consumption and heat generation in the servers due to high performance processing units. Currently, air cooling is the most widely used thermal management technique in data centers, but it has started to reach its limitations in cooling of high-power density packaging. Therefore, industries utilizing data centers are looking to singlephase immersion cooling using various dielectric fluids to reduce the operational and cooling costs by enhancing the thermal management of servers. In this study, heat sinks with TPMS lattice structures were designed for application in singlephase immersion cooling of data center servers. These designs are made possible by Electrochemical Additive Manufacturing (ECAM) technology due to their complex topologies. The ECAM process allows for generation of complex heat sink geometries never before possible using traditional manufacturing processes. Geometric complexities including amorphous and porous structures with high surface area to volume ratio enable ECAM heat sinks to have superior heat transfer properties. Our objective is to compare various heat sink geometries by minimizing chip junction temperature in a single-phase immersion cooling setup for natural convection flow regimes. Computational fluid dynamics in ANSYS Fluent is utilized to compare the ECAM heat sink designs. The additively manufactured heat sink designs are evaluated by comparing their thermal performance under natural convection conditions. This study presents a novel approach to heat sink design and bolsters the capability of ECAM-produced heat sinks. 
    more » « less
  3. Abstract Data centers are witnessing an unprecedented increase in processing and data storage, resulting in an exponential increase in the servers’ power density and heat generation. Data center operators are looking for green energy efficient cooling technologies with low power consumption and high thermal performance. Typical air-cooled data centers must maintain safe operating temperatures to accommodate cooling for high power consuming server components such as CPUs and GPUs. Thus, making air-cooling inefficient with regards to heat transfer and energy consumption for applications such as high-performance computing, AI, cryptocurrency, and cloud computing, thereby forcing the data centers to switch to liquid cooling. Additionally, air-cooling has a higher OPEX to account for higher server fan power. Liquid Immersion Cooling (LIC) is an affordable and sustainable cooling technology that addresses many of the challenges that come with air cooling technology. LIC is becoming a viable and reliable cooling technology for many high-power demanding applications, leading to reduced maintenance costs, lower water utilization, and lower power consumption. In terms of environmental effect, single-phase immersion cooling outperforms two-phase immersion cooling. There are two types of single-phase immersion cooling methods namely, forced and natural convection. Here, forced convection has a higher overall heat transfer coefficient which makes it advantageous for cooling high-powered electronic devices. Obviously, with natural convection, it is possible to simplify cooling components including elimination of pump. There is, however, some advantages to forced convection and especially low velocity flow where the pumping power is relatively negligible. This study provides a comparison between a baseline forced convection single phase immersion cooled server run for three different inlet temperatures and four different natural convection configurations that utilize different server powers and cold plates. Since the buoyancy effect of the hot fluid is leveraged to generate a natural flow in natural convection, cold plates are designed to remove heat from the server. For performance comparison, a natural convection model with cold plates is designed where water is the flowing fluid in the cold plate. A high-density server is modeled on the Ansys Icepak, with a total server heat load of 3.76 kW. The server is made up of two CPUs and eight GPUs with each chip having its own thermal design power (TDPs). For both heat transfer conditions, the fluid used in the investigation is EC-110, and it is operated at input temperatures of 30°C, 40°C, and 50°C. The coolant flow rate in forced convection is 5 GPM, whereas the flow rate in natural convection cold plates is varied. CFD simulations are used to reduce chip case temperatures through the utilization of both forced and natural convection. Pressure drop and pumping power of operation are also evaluated on the server for the given intake temperature range, and the best-operating parameters are established. The numerical study shows that forced convection systems can maintain much lower component temperatures in comparison to natural convection systems even when the natural convection systems are modeled with enhanced cooling characteristics. 
    more » « less
  4. Abstract Data centers have started to adopt immersion cooling for more than just mainframes and supercomputers. Due to the inability of air cooling to cool down recent high-configured servers with higher Thermal Design Power, current thermal requirements in machine learning, AI, blockchain, 5G, edge computing, and high-frequency trading have resulted in a larger deployment of immersion cooling. Dielectric fluids are far more efficient at transferring heat than air. Immersion cooling promises to help address many of the challenges that come with air cooling systems, especially as computing densities increase. Immersion-cooled data centers are more expandable, quicker installation, more energy-efficient, allows for the cooling of almost all server components, save more money for enterprises, and are more robust overall. By eliminating active cooling components such as fans, immersion cooling enables a significantly higher density of computing capabilities. When utilizing immersion cooling for server hardware that is intended to be air-cooled, immersion-specific optimized heat sinks should be used. A heat sink is an important component for server cooling efficacy. This research conducts an optimization of heatsink for immersion-cooled servers to achieve the minimum case temperature possible utilizing multi-objective and multidesign variable optimization with pumping power as the constraint. A high-density server of 3.76 kW was modeled on Ansys Icepak that consists of 2 CPUs and 8 GPUs with heatsink assemblies at their Thermal Design Power along with 32 Dual In-line Memory Modules. The optimization is conducted for Aluminum heat sinks by minimizing the pressure drop and thermal resistance as the objective functions whereas fin count, fin thickness, and heat sink height are chosen as the design variables in all CPUs, and GPUs heatsink assemblies. Optimization for the CPU and the GPU heatsink was done separately and then the optimized heatsinks were tested in an actual test setup of the server in ANSYS Icepak. The dielectric fluid for this numerical study is EC-110 and the cooling is carried out using forced convection. A Design of Experiment (DOE) is created based on the input range of design variables using a full-factorial approach to generate multiple design points. The effect of the design variables is analyzed on the objective functions to establish the parameters that have a greater impact on the performance of the optimized heatsink. The optimization study is done using Ansys OptiSLang where AMOP (Adaptive Metamodel of Optimal Prognosis) as the sampling method for design exploration. The results show total effect values of heat sinks geometric parameters to choose the best design point with the help of a Response Surface 2D and 3D plot for the individual heat sink assembly. 
    more » « less
  5. Abstract The data center’s server power density and heat generation have increased exponentially because of the recent, unparalleled rise in the processing and storing of massive amounts of data on a regular basis. One-third of the overall energy used in conventional air-cooled data centers is directed toward cooling information technology equipment (ITE). The traditional air-cooled data centers must have low air supply temperatures and high air flow rates to support high-performance servers, rendering air cooling inefficient and compelling data center operators to use alternative cooling technology. Due to the direct interaction of dielectric fluids with all the components in the server, single-phase liquid immersion cooling (Sp-LIC) addresses mentioned problems by offering a significantly greater thermal mass and a high percentage of heat dissipation. Sp-LIC is a viable option for hyper-scale, edge, and modular data center applications because, unlike direct-to-chip liquid cooling, it does not call for a complex liquid distribution system configuration and the dielectric liquid can make direct contact with all server components. Immersion cooling is superior to conventional air-cooling technology in terms of thermal energy management however, there have been very few studies on the reliability of such cooling technology. A detailed assessment of the material compatibility of different electronic packaging materials for immersion cooling was required to comprehend their failure modes and reliability. For the mechanical design of electronics, the modulus, and thermal expansion are essential material characteristics. The substrate is a crucial element of an electronic package that has a significant impact on the reliability and failure mechanisms of electronics at both the package and the board level. As per Open Compute Project (OCP) design guidelines for immersion-cooled IT equipment, the traditional material compatibility tests from standards like ASTM 3455 can be used with certain appropriate adjustments. The primary focus of this research is to address two challenges: The first part is to understand the impact of thermal aging on the thermo-mechanical properties of the halogen-free substrate core in the single-phase immersion cooling. Another goal of the study is to comprehend how thermal aging affects the thermo-mechanical characteristics of the substrate core in the air. In this research the substrate core is aged in synthetic hydrocarbon fluid (EC100), Polyalphaolefin 6 (PAO 6), and ambient air for 720 hours each at two different temperatures: 85°C and 125°C and the complex modulus before and after aging are calculated and compared. 
    more » « less